Characteristics of the Energetic Igniters Through Integrating Al/NiO Nanolaminates on Cr Film Bridge

نویسندگان

  • YiChao Yan
  • Wei Shi
  • HongChuan Jiang
  • Jie Xiong
  • WanLi Zhang
  • Yanrong Li
چکیده

The energetic igniters through integrating Al/NiO nanolaminates on Cr film bridges have been investigated in this study. The microstructures demonstrate well-defined geometry and sharp interfaces. The depth profiles of the X-ray photoelectron spectroscopy of Al/NiO nanolaminates annealed at 550 °C with a bilayer thickness of 250 nm show that the interdiffusion between the Al layer and NiO layer has happened and the annealing temperature cannot provide enough energy to make the diffusion process much more complete. The electrical explosion characteristics employing a capacitor discharge firing set at the optimized charging voltage of 40 V show that the flame duration time is about 700 μs, and an excellent explosion performance is obtained for (Al/NiO)n/Cr igniters with a bilayer thickness of 1000 nm.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Characteristics of the Energetic Igniters Through Integrating B/Ti Nano-Multilayers on TaN Film Bridge

The energetic igniters through integrating B/Ti nano-multilayers on tantalum nitride (TaN) ignition bridge are designed and fabricated. The X-ray diffraction (XRD) and temperature coefficient of resistance (TCR) results show that nitrogen content has a great influence on the crystalline structure and TCR. TaN films under nitrogen ratio of 0.99 % exhibit a near-zero TCR value of approximately 10...

متن کامل

Characteristics of the Energetic Micro-initiator Through Integrating Al/Ni Nano-multilayers with Cu Film Bridge

An energetic micro-initiator through integrating Al/Ni nano-multilayers with Cu film bridge was investigated in this study. The Cu film bridge was initially fabricated with wet etching, and Al/Ni nano-multilayers were alternately deposited on the surface of Cu film bridge by magnetron sputtering. The periodic layer structure of Al/Ni nano-multilayers was verified by scanning electron microscopy...

متن کامل

Structural characteristics and tribological properties of TiAlCr(Si)CN nanocomposite films coated on the SPK 1.2080 tool steel using PVD technique

In the present work, structural characteristics and tribological properties of the Ti-Al-Cr-(Si)-C-N nanocomposite films coated on the SPK 1.2080 tool steel byPVD technique have been investigated. The PVD coating process was carried out using Ti (Si) Al and CrAl cathodes at 150 A current, 40 V bias and (Ar)0.1(CH4)0.45(N2)0.45 gas mixture for 50 min. Evaluations were conducted by OM, FESEM, AFM...

متن کامل

Magnetic MAX phases from theory and experiments; a review.

This review presents MAX phases (M is a transition metal, A an A-group element, X is C or N), known for their unique combination of ceramic/metallic properties, as a recently uncovered family of novel magnetic nanolaminates. The first created magnetic MAX phases were predicted through evaluation of phase stability using density functional theory, and subsequently synthesized as heteroepitaxial ...

متن کامل

Molecular Dynamics Simulation of Al Energetic Nano Cluster Impact (ECI) onto the Surface

On the atomic scale, Molecular Dynamic (MD) Simulation of Nano Al cluster impact on Al (100) substrate surface has been carried out for energies of 1-20 eV/atom to understand quantitatively the interaction mechanisms between the cluster atoms and the substrate atoms. The many body Embedded Atom Method (EAM) was used in this simulation. We investigated the maximum substrate temperature Tmax  and...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 10  شماره 

صفحات  -

تاریخ انتشار 2015